
Porting Go to NetBSD/arm64

Maya Rashish

Abstract

Go makes the unusual choice of a custom toolchain and hand-
written assembly. The rationale behind some of those choices
is explained and techniques used for solving problems are
mentioned.

1 Introduction

Golang or Go1 is a statically typed, compiled, garbage-
collected language. It enables easy concurrency and cross-
compilation. The most popular implementation of Go is self-
hosted (written in Go), and is independent of libc. The choices
made by Go create difficulties for adapting the compiler for
new targets. This paper will discuss the adaptation of Go to
a NetBSD Aarch64 machines and the difficulties involved in
the process.

2 Difficulties

2.1 Custom tooling

In many languages today, the implementation can be de-
scribed as the following steps:

High-level code

Compiler

Assembler

Linker

Machine code glue code libc OS

Figure 1: Typical language overview.
Language-specific parts are in brown.

1https://golang.org/

High-level code

Compiler

Assembler

Linker

Machine code syscall module OS

Figure 2: Go top-level overview.
Go-specific parts are in brown.

Go has chosen to take a different approach. Due to limita-
tions to existing tools at the time, Go has chosen to incorporate
tools implemented by its authors for the Plan9 project2. These
include, unusually, a custom assembler with a special assem-
bly syntax3 and linker. Go doesn’t use any external toolchain
code.

This allows the Go code to support cross-compilation with-
out needing to adjust any external packages, but comes at the
cost of being another component that needs to be taught about
new architectures.

Since the port to NetBSD/arm64 was the third OS (after
Linux and Darwin), this didn’t require any additional changes
by the author.

2.2 CGo overhead

Stack The Go stack is not suitable for running arbitrary for-
eign C code, so another stack is used for foreign function
calls.

ABI Go’s internal function calls know not to trample certain
global state. It must be saved/restored on function calls
into foreign code.

Internal accounting Go manages scheduling of goroutines

2Plan9 operating system
3https://golang.org/doc/asm



and a garbage-collector. These require timing informa-
tion to handle.

Go code communicates whether a function may block,
and foreign code doesn’t do this, so it has a special ac-
counting state. We must communicate this to the ac-
counting before switching to the foreign code.

3 Implementation

Custom code to call the operating system
Functions like "sleep for a few seconds" are very commonly

used, so as an optimization, it is preferable to use custom Go-
like code for them.

For this reason, Go had to be taught a lot of information
normally contained within libc, like how to open files, how to
exit. These interfaces are specific to the operating system, so
code specific to NetBSD had to be written.

The majority of the effort of porting Go to NetBSD/arm64
was spent on teaching Go about how to ask the operating
system to do certain things normally done in libc.

Other ports to arm64 exist, Linux and Darwin. The Lin-
ux/arm64 implementation was a source of inspiration, as was
the cost for NetBSD/amd64 systems. In NetBSD, libc con-
tains system call code and was inspected for comparison.

The Darwin implementation will call into system libraries,
as Darwin doesn’t offer backwards compatibility for code
using system calls directly.

3.1 ABI
Using system calls is typically a matter of passing arguments
in a previously agreed upon manner, and calling a special
"syscall" instructions which switches into the kernel.

Typical calling convention for Aarch64 functions4:

SP Stack pointer
r0..r7 Input and output registers

Most system calls within NetBSD follow the function call-

4AArch64 Procedure Call Standard

mmap(0, 0x8000 , 0x3, 0x1002 , 0xffffffff ,
0, 0) = 0x7f7ff7ef7000
open("/etc/ld.so.conf", 0, 0x7f7ff7e12768)
Err#2 ENOENT

Figure 3: Typical ktrace output

ing convention, and would use r0 for the first input argument,
r1 for the second, and so forth. Additional arguments are
passed on the stack.

However not all system calls followed this convention.
SYS_syscall (syscall number #0), which has the syscall num-
ber as the first argument, uses r17 for passing the syscall
number.

Similarly, linux chooses to use r8 for passing the syscall
number, instead of passing the paramter using the Aarch64
syscall instruction ("SVC") paramter.

3.2 Debugging
The porting effort consisted of writing around 500 lines of
assembly code, a very error-prone effort, prior to any testing.
Unsurprisingly, the first attempt to run any code didn’t work.

For the purpose of debugging, ktrace5 was used.
System call numbers appear in their names, and the argu-

ments are enclosed in parentheses, similar to C function calls.
Return values or errors are shown after the closing paren.

ktrace was an invaluable tools, as most of the mistakes were
within Go code.

4 Results

At the end, simple programs run. Additional work is done to
build the compiler natively. The code is available online and
is awaiting review by Go upstream. 6

5Running binaries prepended by the ktruss(1) command
6https://github.com/golang/go/pull/29398




